
This book is licensed under a Creative Commons Attribution 3.0 License

11. Matrices and graphs: 
transitive closure

Learning objectives:

• atomic versus structured objects

• directed versus undirected graphs

• transitive closure

• adjacency and connectivity matrix

• boolean matrix multiplication

• efficiency of an algorithm. asymptotic notation

• Warshall’s algorithm

• weighted graph

• minimum spanning tree

In any  systematic presentation of  data  objects,  it  is  useful  to distinguish  primitive or  atomic objects from 

composite or structured objects. In each of the preceding chapters we have seen both types: A bit, a character, or an 

identifier is usually considered primitive; a word of bits, a string of characters, an array of identifiers is naturally  

treated as composite. Before proceeding to the most common primitive objects of computation, numbers, let us  

discuss one of the most important types of structured objects, matrices. Even when matrices are filled with the 

simplest of primitive objects, bits, they generate interesting problems and useful algorithms.

Paths in a graph

Syntax diagrams and state diagrams are examples of a type of object that abounds in computer science: A graph 

consists  of  nodes  or  vertices,  and of  edges  or  arcs that  connect  a pair of  nodes.  Nodes and edges often have 

additional information attached to them, such as labels or numbers. If we wish to treat graphs mathematically, we  

need a definition of these objects.

Directed graph. Let N be the set of n elements {1, 2, … , n} and E a binary relation: E  N ⊆ ξ N, also denoted by 

an arrow,  →. Consider N to be the set of nodes of a directed graph G, and E the set of arcs (directed edges). A  

directed graph G may be represented by its  adjacency matrix A (Exhibit  11.1), an n  ξ  n boolean matrix whose 

elements A[i, j] determine the existence of an arc from i to j:

A[i, j] = true    iff    i → j.

An arc is a path of length 1. From A we can derive all paths of any length. This leads to a relation denoted by a  

double arrow, ⇒ , called the transitive closure of E:

i ⇒  j, iff there exists a path from i to j

(i.e. a sequence of arcs i  → i1, i1 → i2, i2 → i3, … , ik → j). We accept paths of length 0 (i.e. i ⇒ i for all i). This 

relation ⇒  is represented by a matrix C= A∗ (Exhibit 11.1):

Algorithms and Data Structures 93  A Global Text

http://creativecommons.org/licenses/by/3.0/


11. Matrices and graphs: transitive closure

C[i, j] = true    iff    i ⇒  j.

C stands for connectivity or reachability matrix; C = A
∗

 is also called transitive hull or transitive closure, since 

it is the smallest transitive relation that "encloses" E.

 Exhibit 11.1: Example of a directed graph with its adjacency and connectivity matrix.

(Undirected) graph. If the relation E ⊆ N ξ N is symmetric [i.e. for every ordered pair (i, j) of nodes it also 

contains the opposite pair (j, i)] we can identify the two arcs (i, j) and (j, i) with a single edge, the unordered pair (i, 

j). Books on graph theory typically start with the definition of undirected graphs (graphs, for short), but we treat 

them as a special case of directed graphs because the latter occur much more often in computer science. Whereas  

graphs are based on the concept of an edge between two nodes,  directed graphs embody the concept of one-way 

arcs leading from a node to another one.

Boolean matrix multiplication

Let A, B, C be n ξ n boolean matrices defined by

type nnboolean: array[1 .. n, 1 .. n] of boolean;

var  A, B, C: nnboolean;

The boolean matrix multiplication C = A · B is defined as and implemented by

and implemented by

procedure mmb(var a, b, c: nnboolean);

var  i, j, k: integer;

begin

for  i := 1  to  n  do

for  j := 1  to  n  do  begin

c[i, j] := false;

for  k := 1  to  n  do  c[i, j] := c[i, j] or (a[i, k] and 

b[k, j])  (∗∗ )
end

end;

Remark:  Remember (in the section,  “Pascal  and its  dialects:  Lingua franca of computer science”)  that  we 

usually assume the boolean operations 'or' and 'and' to be conditional (i.e. their arguments are evaluated only as far  

as necessary to determine the value of the expression). An extension of this simple idea leads to an alternative way  

of coding boolean matrix multiplication that speeds up the innermost loop above for large values of n. Explain why  

the following code is equivalent to (∗∗):

k:=1;

94

1

2

3

4

5

1
2
3
4
5

1 2 3 4 5

T

T

T
T

T

T
T
T

T

T T T
T

T
T

TT
T
T
T T

C

1
2
3
4
5

1 2 3 4 5

T

T

T
T

T

T

A



This book is licensed under a Creative Commons Attribution 3.0 License

while  not c[i, j] and (k ≤ n)  do  { c[i, j] := a[i, k] and b[k, 

j];  k := k + 1 }

Multiplication also defines powers, and this gives us a first solution to the problem of computing the transitive 

closure. If Al+1 denotes the L-th power of A, the formula 

has a clear interpretation: There exists a path of length L + 1 from i to j iff, for some node k, there exists a path of 

length L from i to k and a path of length 1 (a single arc) from k to j. Thus A2 represents all paths of length 2; in 

general, AL represents all paths of length L, for L ≥ 1:

AL[i, j] = true  iff  there exists a path of length L from i to j.

Rather than dealing directly with the adjacency matrix A, it is more convenient to construct the matrix A' = A or 

I. The identity matrix I has the values 'true' along the diagonal, 'false' everywhere else. Thus in A' all diagonal  

elements A'[i,  i]  = true.  Then A'L describes all  paths of  length ≤ L (instead of exactly equal to L),  for  L ≥ 0. 

Therefore, the transitive closure is A
∗  =  A'(n-1)

The efficiency of an algorithm is often measured by the number of "elementary" operations that are executed on 

a given data set. The execution time of an elementary operation [e.g. the binary boolean operators (and, or) used  

above] does not depend on the operands. To estimate the number of elementary operations performed in boolean 

matrix multiplication as a function of the matrix size n, we concentrate on the leading terms and neglect the lesser 

terms. Let us use asymptotic notation in an intuitive way; it is defined formally in Part IV.

The number of operations (and, or), executed by procedure 'mmb' when multiplying two boolean n ξ n matrices 

is  Θ(n3)  since each of  the nested  loops is  iterated n times.  Hence  the cost for  computing A' (n–1) by  repeatedly 

multiplying with A' is Θ(n4). This algorithm can be improved to Θ(n3 · log n) by repeatedly squaring: A'2, A'4, A'8 , … , 

A'k where k is the smallest power of 2 with k ≥ n – 1. It is not necessary to compute exactly A' (n–1). Instead of A'13, for 

example, it suffices to compute A'16, the next higher power of 2, which contains all paths of length at most 16. In a 

graph with 14 nodes, this set is equal to the set of all paths of length at most 1.

Warshall's algorithm

In search of a faster algorithm we consider other ways of iterating over the set of all paths. Instead of iterating  

over paths of growing length, we iterate over an increasing number of nodes that may be used along a path from 

node i to node j. This idea leads to an elegant algorithm due to Warshall [War 62]:

Compute a sequence of matrices B0, B1, B2, … , Bn:

B0[i, j] = A'[i, j] = true    iff    i = j  or  i → j.

B1[i, j] = true    iff    i ⇒  j using at most node 1 along the way.

B2[i, j] = true    iff    i ⇒  j using at most nodes 1 and 2 along the way

…

Bk[i, j] = true    iff    i ⇒  j using at most nodes 1, 2, … , k along the way.

The matrices B0, B1, … express the existence of paths that may touch an increasing number of nodes along the 

way from node i to node j; thus Bn talks about unrestricted paths and is the connectivity matrix C = Bn.

An iteration step Bk–1 → Bk is computed by the formula

Algorithms and Data Structures 95  A Global Text

http://creativecommons.org/licenses/by/3.0/


11. Matrices and graphs: transitive closure

Bk[i, j]  =  Bk–1[i, j]  or  (Bk–1[i, k] and Bk–1[k, j]).

The cost for performing one step is  Θ(n2), the cost for computing the connectivity matrix is therefore Θ(n3). A 

comparison of the formula for Warshall's algorithm with the formula for matrix multiplication shows that the n-ary 

'OR' has been replaced by a binary 'or'.

At first sight, the following procedure appears to execute the algorithm specified above, but a closer look reveals 

that  it  executes  something  else:  the  assignment  in  the  innermost  loop  computes  new  values  that  are  used 

immediately, instead of the old ones.

procedure warshall(var a: nnboolean);

var i, j, k: integer;

begin

for  k := 1  to  n  do

for  i := 1  to  n  do

for  j := 1  to  n  do

a[i, j] := a[i, j] or (a[i, k] and a[k, j])

{ this assignment mixes values of the old and new matrix }

end;

A more thorough examination, however, shows that this "naively" programmed procedure computes the correct  

result in-place more efficiently than would direct application of the formulas for the matrices Bk. We encourage you 

to verify that the replacement of old values by new ones leaves intact all values needed for later steps; that is, show 

that the following equalities hold:

Bk[i, k] = Bk–1[i, k]  and  Bk[k, j] = Bk–1[k, j].

Exercise: distances in a directed graph, Floyd's algorithm

Modify Warshall's algorithm so that it computes the shortest distance between any pair of nodes in a directed 

graph where each arc is assigned a length ≥ 0. We assume that the data is given in an n ξ n array of reals, where d[i, 

j] is the length of the arc between node i and node j. If no arc exists, then d[i, j] is set to ∞, a constant that is the  

largest real number that can be represented on the given computer. Write a procedure 'dist' that works on an array  

d of type

type  nnreal = array[1 .. n, 1 .. n] of real;

Think of  the meaning of  the boolean operations 'and'  and 'or'  in Warshall's  algorithm, and find arithmetic 

operations that play an analogous role for the problem of computing distances. Explain your reasoning in words 

and pictures.

Solution

The  following  procedure  'dist'  implements  Floyd's  algorithm  [Flo  62].  We  assume  that  the  length  of  a  

nonexistent arc is ∞, that x + ∞ = ∞, and that min(x, ∞) = x for all x.

procedure dist(var d: nnreal);

var  i, j, k: integer;

begin

for  k := 1  to  n  do

for  i := 1  to  n  do

for  j := 1  to  n  do

d[i, j] := min(d[i, j], d[i, k] + d[k, j])

end;

96



This book is licensed under a Creative Commons Attribution 3.0 License

Exercise: shortest paths 

In addition to the distance d[i, j] of the preceding exercise, we wish to compute a shortest path from i to j (i.e.  

one that realizes this distance).  Extend the solution above and write a procedure 'shortestpath' that returns its  

result in an array 'next' of type:

type  nnn = array[1 .. n, 1 .. n] of 0 .. n;

next[i,j] contains the next node after i on a shortest path from i to 

j, or 0 if no such path exists.

Solution
procedure shortestpath(var d: nnreal; var next: nnn);

var  i, j, k: integer;

begin

for  i := 1  to  n  do

for  j := 1  to  n  do

if  d[i, j] ≠ ∞  then  next[i, j] := j  else  next[i, j] := 

0;

for  k := 1  to  n  do

for  i := 1  to  n  do

for  j := 1  to  n  do

if  d[i, k] + d[k, j] < d[i, j]  then

{ d[i, j] := d[i, k] + d[k, j];  next[i, j] := next[i, k] 

}

end;

It is easy to prove that next[i, j] = 0 at the end of the algorithm iff d[i, j] = ∞ (i.e. there is no path from i to j).

Minimum spanning tree in a graph

Consider a weighted graph G = (V, E, w), where V = {v1, …, vn} is the set of vertices, E = {e1, … , em} is the set of 

edges, each edge ei is an unordered pair (vj, vk) of vertices, and w: E → R assigns a real number to each edge, which 

we call its weight. We consider only connected graphs G, in the sense that any pair (vj, vk) of vertices is connected by 

a sequence of edges. In the following example, the edges are labeled with their weight  (Exhibit 11.2).

Exhibit 11.2: Example of a minimum spanning tree.

 A tree T is a connected graph that contains no circuits: any pair (vj, vk) of vertices in T is connected by a unique 

sequence of edges. A spanning tree of a graph G is a subgraph T of G, given by its set of edges ET ⊆ E, that is a tree 

and satisfies the additional condition of being maximal, in the sense that no edge in E \ E T can be added to T 

without destroying the tree property. Observation: a connected graph G has at least one spanning tree. The weight 

Algorithms and Data Structures 97  A Global Text

http://creativecommons.org/licenses/by/3.0/


11. Matrices and graphs: transitive closure

of a spanning tree is the sum of the weights of all its edges. A minimum spanning tree is a spanning tree of minimal 

weight. In Exhibit 11.2, the bold edges form the minimal spanning tree.

Consider the following two algorithms:

Grow:

ET := ∅ ;  { initialize to empty set } while  T is not a spanning tree  do ET := ET ∪  {a min cost edge that does 

not form a circuit when added to ET}

Shrink:

ET := E;  { initialize to set of all edges } while  T is not a spanning tree  do ET := ET \ {a max cost edge that 

leaves T connected after its removal}

Claim: The "growing algorithm" and "shrinking algorithm" determine a minimum spanning tree.

If T is a spanning tree of G and e = (v j, vk) ∉  ET, we define Ckt(e, T), "the circuit formed by adding e to T" as the 

set of edges in ET that form a path from v j to vk. In the example of Exhibit 11.2 with the spanning tree shown in bold 

edges we obtain Ckt((v4, v5), T) = {(v4, v1), (v1, v2), (v2, v5)}.

Exercise

Show that for each edge e ∉  ET there exists exactly one such circuit. Show that for any e ∉  ET and any t ∉  Ckt(e, 

T) the graph formed by (ET \ {t}) ∪  {e} is still a spanning tree.

A local minimum spanning tree of G is a spanning tree T with the property that there exist no two edges e ∉  ET , 

t ∉  Ckt(e, T) with w(e) < w(t).

Consider the following 'exchange algorithm', which computes a local minimum spanning tree:

Exchange:

T := any spanning tree;

while  there exists e ∉  ET, t ∈  Ckt(e, T) with w(e) < w(t)  do

ET := (ET \ {t}) ∪  {e};  { exchange }

Theorem: A local minimum spanning tree for a graph G is a minimum spanning tree.

For the proof of this theorem we need:

Lemma: If T' and T" are arbitrary spanning trees for G, T' ≠ T", then there exist e" ∉ ET' , e' ∉ ET" , such that e" 

∈ Ckt(e', T") and e' ∈  Ckt(e", T').

Proof: Since T' and T" are spanning trees for G and T' ≠ T", there exists e" ∈  ET" \ ET'. Assume that Ckt(e", T') 

⊆ T". Then e" and the edges in Ckt(e", T') form a circuit in T" that contradicts the assumption that T" is a tree. Hence 

there must be at least one e' ∈  Ckt(e", T') \ ET".

Assume that for all e' ∈  Ckt(e", T') \ ET" we have e" ∈  Ckt(e', T"). Then 

forms a circuit in T" that contradicts the proposition that T" is a tree. Hence there must be at least one e' ∈ Ckt(e",  

T') \ ET" with e" ∈ Ckt(e', T").

98



This book is licensed under a Creative Commons Attribution 3.0 License

Proof of the Theorem: Assume that T' is a local minimum spanning tree. Let T" be a minimum spanning tree. 

If T' ≠ T" the lemma implies the existence of e' ∈ Ckt(e", T') \ ET" and e" ∈ Ckt(e', T") \ ET'.

If w(e') < w(e"), the graph defined by the edges (ET" \ {e"}) ∪ {e'} is a spanning tree with lower weight than T". 

Since T" is a minimum spanning tree, this is impossible and it follows that

w(e') ≥w (e"). ( ∗)

If w(e') > w(e"), the graph defined by the edges (ET' \ {e'}) ∪ {e"} is a spanning tree with lower weight than T'. 

Since T" is a local minimum spanning tree, this is impossible and it follows that

w(e') ≤ w(e"). (∗∗)

From (∗∗ ) and (∗∗∗∗ ) it follows that w(e') = w(e") must hold. The graph defined by the edges (E T" \ {e"}) ∪ {e'} is 

still  a  spanning tree  that has  the same weight  as  T".  We replace T" by this  new minimum spanning tree and 

continue the replacement process. Since T' and T" have only finitely many edges the process will terminate and T" 

will become equal to T'. This proves that T" is a minimum spanning tree.

The theorem implies that the tree computed by 'Exchange' is a minimum spanning tree.

Exercises

1. Consider how to extend the transitive closure algorithm based on boolean matrix multiplication so that it  

computes (a) distances and (b) a shortest path.

2. Prove  that  the  algorithms 'Grow'  and  'Shrink'  compute local  minimum spanning  trees.  Thus  they  are 

minimum spanning trees by the theorem of the section entitled “Minimum spanning tree in a graph”.

Algorithms and Data Structures 99  A Global Text

http://creativecommons.org/licenses/by/3.0/

